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Abstract:
The study of generalized Fibonomial numbers, the confluence of Fibonacci numbers and
binomial coefficients, has accelerated in the recent time. In this paper we find the number of
different generalized Fibonomial numbers not exceeding a desired limit.
1. Introduction:

The sequence of Fibonacci numbers, �� is a well-known sequence in Number
Theory. The terms of this sequence can be obtained using the recurrence relation �� =
��−1 + ��−2; for � ≥ 2 , where �0 = 0 and �1 = 1 . Kalman and Mena [3] defined the
sequence of generalized Fibonacci numbers as follows:
Definition: For any positive integers a and b, the generalized Fibonacci numbers can be
obtained using the recurrence relation ��

�,� = ���−1
�,� + ���−2

�,� ; � ≥ 2, where �0
(�,�) = 0 and

�1
(�,�) = 1.

First few terms of this sequence are 0, 1, �, �2 + �, �3 + 2��, �4 + 3�2� + �2, … . Clearly,
��

(1,1) = �� , the traditional � th Fibonacci number, ��
2,1 = �� , the �th Pell number and

��
1,2 = �� , the �th Jacobsthal number. The extended Binet formula for ��

�,� is given by

��
�,� = ��−��

�−�
, where � = �+ �2+4�

2
and � = �− �2+4�

2
.

Shah and Shah [5] introduced the generalized Lucas numbers ��
�,� and they defined

these numbers as under:
Definition: For any positive integer � and � , the generalized Lucas numbers are defined by
the recurrence relation ��

�,� = ���−1
�,� + ���−2

�,� ; � ≥ 2, where �0
(�,�) = 2 and �1

(�,�) = �.
First few terms of this sequence are 2, �, �2 + 2�, �3 + 3��, �4 + �2� + 4�� +

2�2, … . They derived many interesting results related with these numbers and obtained the

corresponding extended Binet formula as ��
�,� = �� + �� , where � = �+ �2+4�

2
and

� = �− �2+4�
2

. Clearly ��
1,1 = ��, the traditional ��ℎ Lucas number, ��

2,1 = ��, the �th Pell-

Lucas number and ��
1,2 = �� , the �th Jacobsthal-Lucas number. From the extended Binet

formulae of generalized Fibonacci numbers and generalized Lucas numbers, it is easy to
observe that ��

�,� ≤ ��
�,� .

The confluence of binomial coefficients and Fibonacci numbers, namely Fibonomial
numbers, is a widely studied topic for a quite long time now. Its generalization has also
interested many enthusiastic. Shah and Shah have studied various generalization of
Fibonomial numbers in [6], [7] and [8].
1.1 Genomial numbers:

Shah and Shah defined the genorial numbers ��
�,� ∗ and genomial numbers �

� �
in [6]

as under and obtained interesting properties related to them.
Definition: The genorial numbers are defined by

��
�,� ∗ = ��

�,� × ��−1
�,� × ⋯ × �2

�,� × �1
�,� ; � > 0 and �0

�,� ∗ = 1.
Definition: The genomial numbers are defined by

�
� �

= ��
�,� ∗

��
�,� ∗×��−�

�,� ∗ ; 0 ≤ � ≤ �.
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Tables 1 and 2 give first few terms of genorial numbers and genomial numbers
respectively.

‘Table 1 about here’
‘Table 2 about here’

1.2 Double Fibonomial numbers:
In [7], Shah and Shah have introduced double Fibonomial numbers as under and

obtained interesting properties of them.
Definition: For any non-negative integer �, double Fibonorial numbers are defined as

�‼� ≡
1 ; � = 0

�� × � �−2 × ⋯ × �6 × �4 × �2 ; � > 0 is even
�� × � �−2 × ⋯ × �5 × �3 × �1 ; � > 0 is odd

Definition: For non-negative integers � and �, such that � ≤ �, double Fibonomial numbers
are defined as

�
� �

= �!!�
�‼�× �−� ‼�

.

Tables 3 and 4 displays first few terms of double Fibonorial numbers and double
Fibonomial numbers respectively.

‘Table 3 about here’
‘Table 4 about here’

1.3 Super Fibonomial numbers:
Shah and Shah have defined the super Fibonorial numbers and super Fibonomial

numbers in [8] as under:
Definition: For any non-negative integer �, super Fibonorial numbers are defined as

�!�∗ = 1 ; � = 0
�!� × � − 1 !� × ⋯ × 1!�; � > 0 .

It is easy to observe that �!�∗ = �1
� × �2

�−1 × ⋯ × ��, for � > 0.
Definition: For non-negative integers � and � ; such that � ≥ � , super Fibonomial numbers
are defined as

�
� �

= �!�
∗

�!�
∗ �−� !�

∗ = � − � !�
�
� �

� − 1
� − 1 �

⋯ � − � + 1
1 �

.

Tables 5 and 6 presents first few terms of super Fibonomial numbers and super
Fibonomial numbers respectively. Note that super Fibonomial numbers also satisfies the
symmetrical property �

� − � �
= �

� �
. Thus, in table 6, we consider only left-side of the

Pascal-like triangle for super Fibonomial numbers.
‘Table 5 about here’
‘Table 6 about here’

In the next section, we find the total number of above mentioned generalized
Fibonomial numbers not exceeding any given positive real number �.
2. Number of genomial numbers not exceeding a desire limit:

Genomial numbers presented in the table 2 demonstrates the structure similar to the
Pascal’s triangle. This triangle extends down indefinitely. As shown, the array is bordered by
1’s. It is symmetric about the vertical line through the middle. In this section we obtain the
number of genomial numbers not exceeding any large positive real number � . We first
discard all trivial genomial numbers from the table 2 by cancelling all the bordered 1’s and all
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the numbers on one side of the vertical line through the middle. Thus, we are left with the
numbers as shown in the table 7.

‘Table 7 about here’
We observe that the first ‘cross-row’ from the top of the triangle in table 7 gives the

sequence �1(�) of numbers of the form �
1 �

, so that �1 � = �1,� �≥1 = �, �2 + �, �3 +

2��, �4 + 3�2� + �2, �5 + 4�3� + 3��2, … . The second cross-row gives the sequence �2(�)

of numbers of the form �
2 �

, so that �2 � = �2,� �≥1 = �4 + 3�2� + 2�2, �6 + 5�4� +

7�2�2 + 2�3, �8 + 7�6� + 16�4�2 + 13�2�3 + 3�4, … . In general, the �th cross-row

consists of sequence ��(�) = ��,� �≥1 of numbers of the form
�
� �

.

In the following lemma, we show that all these sequences are strictly increasing.
Lemma 2.1: ��(�) is the strictly increasing sequence for every fixed � ≥ 1.
Proof: For the generalized Fibonacci numbers, it is easy to observe that ��+�

�,� < �2�+�
�,� .

Therefore,
�2�+�−1

�,� × �2�+�−2
�,� × ⋯ × ��+�

�,� < �2�+�
�,� × �2�+�−1

�,� × ⋯ × ��+�+1
�,� .

Further on multiplying ��+�−1
�,� × ��+�−2

�,� × ⋯ × �1
�,� in the numerator and denominator on

left hand side and multiplying ��+�
�,� × ��+�−1

�,� × ⋯ × �1
�,� in the numerator and denominator

on right hand side, we obtain 2� + � − 1
� �

< 2� + �
� �

, that is, ��,� < ��,�+1 . Hence,

��(�) is a strictly increasing sequence for all the values of � ≥ 1, as stated.

To decide the range of �, we first show that the terms of the type �� 1 �≥1 = 2�
� �

make a strictly increasing sequence.

Lemma 2.2: 2�
� �

is strictly increasing for every � ≥ 1.

Proof: By [4], it is known that ��
�,� ≤ ��

�,� and �2�
�,� = ��

�,� ��
�,� . Thus,

��+1
�,� 2

≤ �2�+2
�,� < �2�+2

�,� �2�+1
�,� .

Using the definition of genorial number, clearly �2�
�,� ∗

��
�,� ∗ 2 < �2�+2

�,� ∗

��+1
�,� ∗ 2 . Also, using the definition

of genomial number, we get 2�
� �

< 2� + 2
� + 1 �

. Hence 2�
� �

is strictly increasing for

every � ≥ 1.
The following theorem gives the asymptotic value of the number of genomial numbers

up to a desired limit.
Theorem 2.3: The total number of genomial numbers not exceeding any large positive real
number � is given by log �

2 log �
log log �

log �
+ � − 1

2
log �
log �

+ � log � , where � is a Euler’s

constant.
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Proof: We first find the number of genomial numbers not exceeding � in each of the
sequences ��,� �≥1 . For that we need to find � such that ��,� ≤ � < ��,�+1 . This will be

equivalent to � + 2� − 1
� �

≤ � < � + 2�
� �

. Using the definition of �
� �

, we get

��+2�−1
�,� × ��+2�−2

�,� × ⋯ × ��+�
�,� ≤ � × ��

�,� ∗ < ��+2�
�,� × ��+2�−1

�,� × ⋯ × ��+�+1
�,� .

By [4], it is known that ��−2 < ��
�,� < ��−1, where � ≥ 3 and � = �+ �2+4�

2
. Thus, if we let

� + 2� = �, then we get
��−3 × ��−4 × ⋯ × ��−�−2 < � × ��

�,� ∗ < ��−1 × ��−2 × ⋯ × ��−�.

This is equivalent to �
� 2�−�−5

2 < � × ��
�,� ∗ < �

� 2�−�−1
2 . Now we substitute � = � + 2�

back so as to get �
� 3�+2�−5

2 < � × ��
�,� ∗ < �

� 3�+2�−1
2 . This gives

�
2

3� + 2� − 5 log � < log � × ��
�,� ∗ < �

2
3� + 2� − 1 log �.

Thus, � <
log �×��

�,� ∗

� log �
− 3�−5

2
< � + 2, so that

� =
log �×��

�,� ∗

� log �
− 3�−3

2
or � =

log �×��
�,� ∗

� log �
− 3�−1

2
.

Now since ��
�,� = ��−��

�−�
, we have ��

�,� = �� 1− �
�

�

�−�
, where �

�
< 1 and � − � > 1 . Thus,

log ��
�,� ≈ � log �. Also, since log � × ��

�,� ∗ = log � + �=1
� log ��

�,�� , we have log � ×

��
�,� ∗ ≈ log � + � �+1

2
log �. This gives

� = log �
� log �

− � + 2 or = log �
� log �

− � + 1 .

Therefore, � ∈ log �
� log �

− � + 2 + �', log �
� log �

− � + 1 + �' ; 0 ≤ �' < 1 . These values can be

collaborated as
� = log �

� log �
− � + 1 + �; 0 ≤ � < 2.

Here, the value of � gives the number of genomial numbers not exceeding � in each of the
sequence �� � , for any fixed �.

To find the total number of genomial numbers not exceeding � , we next need to find

the total number of such sequences. That is, we need to find the value of � such that 2�
� �

≤

� < 2� + 2
� + 1 �

. Using the definition of genomial numbers, we have

�2�
�,� ×�2�−1

�,� ×⋯×��+1
�,�

��
�,� ×��−1

�,� ×⋯×�1
�,� ≤ � < �2�+1

�,� ×�2�
�,� ×⋯×��+2

�,�

��+1
�,� ×��

�,� ×⋯×�1
�,� .

Thus, �2�−2×�2�−3×⋯×��−1

��−1×��−2×⋯×�0 < � < �2�+1×�2�×⋯×��+1

��−1×��−2×⋯×�−1 , which can be further simplified to �� �+1 <

� < � �+1 �+2 . Therefore �2 + � < log �
log �

< �2 + 3� + 2 , which can be rewritten as �2 −

2� + 1 < �2 + � < log �
log �

< �2 + 3� + 2 < �2 + 4� + 4. Therefore,

� − 1 2 < log �
log �

< � + 2 2, that is � − 1 < log �
log �

< � + 2.
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Thus, � < log �
log �

+ 1 < � + 3 , which gives � = log �
log �

or � = log �
log �

− 1 . That is

� ∈ log �
log �

+ �, log �
log �

− 1 + � ; 0 ≤ � < 1 . After collaborating these values, we have

� = log �
log �

+ �'; − 1 ≤ �' < 1.

Hence, the total number of genomial numbers not exceeding a given positive real number � is

�=1

log �
log �+�' log �

� log �
− � + 1 + �� ; where 0 ≤ � < 2 and −1 ≤ �' < 1.

Considering log �
log �

+ �' = �, above can be written as
log �
log � �≤�

1
�

� − �≤� �� + 1 + � �≤� 1� .

This can be expanded using results from [1] as follows:
log �
log �

log � + � + � 1
�

− �2

2
+ � � + 1 + � � + � 1 .

This is same as log �
log �

log log �
log �

+ � + � log �
log �

− log �
2 log �

+ � log �
log �

. Thus, the total

number of genomial numbers not exceeding a given positive real number � is asymptotically
equal to log �

2 log �
log log �

log �
+ � − 1

2
log �
log �

+ � log � .

The following corollary states that natural density of genomial numbers in [1, �]
approaches to zero, where � is any positive real number.
Corollary 2.4: The natural density of genomial numbers approaches to zero.
Proof: From last theorem, the natural density � of genomial numbers is given by

� = lim
�→∞

log �
2 log � log log �

log � + �−1
2

log �
log �+� log �

�
.

This is same as � = lim
�→∞

log �
2 log � log log �

log � + �−1
2

log �
log �

�
+ lim

�→∞

� log �
�

. Since � > log �, lim
�→∞

� log �
�

vanishes. Therefore, � = lim
�→∞

log �
2 log � log log �

log � + �−1
2

log �
log �

�
approaches to zero.

3. Number of double Fibonomial numbers not exceeding a desired limit:
To find the number of double Fibonomial numbers not exceeding some large positive

real number �, here too we discard all the trivial double Fibonomial numbers from the table 4.
We are thus left over with the following non-trivial double Fibonomial numbers.

‘Table 8 about here’

Here we note that any arbitrary �th cross-row consists of numbers of the type �
� �

,

which we define to be the sequence ��(�) = ��,� �≥1 . We show that these sequences are
strictly increasing for every � ≥ 1.
Lemma 3.1: For the sequence �1 � = �1,� �≥1,
(a) the subsequence {�1,1, �1,3, �1,5, ⋯} is strictly increasing
(b) the subsequence {�1,2, �1,4, �1,6, ⋯} is strictly increasing



36VNSGU Journal of Research and Innovation (Peer Reviewed)
ISSN:2583-584X
Volume No.2 Issue No.:2

36

(c) every term with odd suffix is greater than it’s both the neighboring terms with even
suffices.
Proof: Clearly, the sequence �1 � = �1,� �≥1 will form two subsequences {�1,1, �1,3, ⋯}
and {�1,2, �1,4, ⋯}. We only prove the results (a) and (c).

We start with �1,1, �1,3, ⋯ = 2
1 �

, 4
1 �

, ⋯ , which consists of the elements of the

type 2�
1 �

= �2�×�2�−2×⋯×�4×�2
�2�−1×�2�−3×⋯×�3×�1

; for � = 1,2, ⋯. Since �2�+2
�2�+1

> 1, we get �1,2�+1 >

�1,2�−1. This shows that the subsequence considered is strictly increasing.
Further (c) follows easily from the known result for the Fibonacci numbers that �2�

2 <
�2�−1�2�+1.
Lemma 3.2: The sequence �� � = ��,1, ��,2, … ; � > 1 is strictly increasing.

Proof: For the fixed �, we show that ��,� < ��,�+1; for all � , that is �‼�
�−� ‼�

< �+1 ‼�
�−�+1 ‼�

. Now

for the even value of �, this inequality reduces to
�� × ��−2 × ⋯ × ��−�+1 < ��+1 × ��−1 × ⋯ × ��−�+2,

which always holds since each term on right side is bigger than the corresponding term of left
side. Also, for odd value of �, we prove the result only when � is even. The other case can be
proved accordingly. Now when � is even, the required inequality reduces to

��−�+1×��−�−1×⋯×�2
��−�×��−�−2×⋯×�1

< ��+1×��−1×⋯×�3×�1
��×��−2×⋯×�2

.

Here both the sides of this inequality consist of ratios of consecutive Fibonacci numbers.
Since �2�+1

�2�
≥ �2�

�2�−1
and the number of such ratios on the right side is greater than that of left

side, the required inequality follows. This proves the required result.
In the following lemma, we show that the terms of the right most column of the table 8

also form a strictly increasing sequence.

Lemma 3.3: 2�
� �

is strictly increasing sequence for every � ≥ 1.

Proof: To prove the result, it is enough to show that �2�+2�‼� > � + 1 ‼�. As for any value
of �, �2�+2 > ��+1 is always true, the result follows.

The following theorem now gives the number of double Fibonomial numbers up to the
desired limit.
Theorem 3.4: The number of double Fibonomial numbers not exceeding any large positive
real number � is asymptotically equal to

log �
log �

log log �
2 log �

− �1 + � − 1
4

log �
log �

+ �2 + � log � ;

where �1 =
0; � is even
1
2

; � is odd and �2 =
0 ; � is even

log �
8 log �

− 1
8
; � is odd .

Proof: We first find the number
of generalized double Fibonomial numbers not exceeding � in the sequence ��(�) =
��,� �≥1 . For that we need to find � such that ��,� ≤ � < ��,�+1 , which is equivalent to
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�+2�−1 ‼�
�+�−1 ‼�

≤ � × �‼� < �+2� ‼�
�+� ‼�

. Now depending on the parity of � and �, we consider the four

cases. When both � and � are even positive integers, we get
��+2�−1 × ��+2�−3 × ⋯ × ��+�+1 ≤ � × �‼� < ��+2� × ��+2�−2 × ⋯ × ��+�+2.

Therefore, we have
� �+2�−3 + �+2�−5 +⋯+ �+�−1 ≤ � × �‼� < � �+2�−1 + �+2�−3 +⋯+ �+�+1 .

This is equivalent to �
� 2�+3�−4

4 ≤ � × �‼� < �
� 2�+3�

4 , which is same as

� ≤ 1
2

4 log �×�‼�

� log �
− 3� + 4 < � + 2.

Thus, we get either � = 2 log �×�‼�

� log �
− 3

2
� + 2 or � = 2 log �×�‼�

� log �
− 3

2
� + 1 . For the other

three cases too, we get the similar values for � . Now, when � is even, log � × �‼� =

log � + log �2 + log �4 + ⋯ + log �� . Since log �� = � log � ; where � = 1+ 5
2

, we get

log � × �‼� = log � + (2 log � + 4 log � + ⋯ + � log � ) = log � + � �+2
4

log � . Thus,

either � = 2 log �
� log �

− � + 3 or � = 2 log �
� log �

− � + 2 . This can be written as � ∈ 2 log �
� log �

− � + 3 +

�', 2 log �
� log �

− � + 2 + �' ; 0 ≤ �' < 1. These values can be collaborated as

� = 2 log �
� log �

− � + 2 + �; 0 ≤ � < 2.

Here, the value of � gives the number of double Fibonomial numbers not exceeding � in each
of the sequence �� � , for any fixed even integer �. To find the required number of double
Fibonomial numbers, we take the summation over � . Again, to find the upper limit of this

sum we need to find the value of �, such that 2�
� �

≤ � < 2� + 2
� + 1 �

, where 2�
� �

represents right most column in table 8. This inequality can be rewritten as
�2�×�2�−2×⋯×�2
��×��−2×⋯×�1

2 ≤ � < �2�+2×�2�×⋯×�2
��+1×��−1×⋯×�2

2 ,

which is equivalent to �2�−2×�2�−4×⋯×�0

��−1×��−3×⋯×�0 2 ≤ � < �2�+1×�2�−1×⋯×�1

��−1×��−3×⋯×�0 2 . This gives �
�−1 2

2 ≤ � <

�
�+2 2−1

2 < �
�+2 2

2 , that is � ≤ 2 log �
log �

+ 1 < � + 3 . Thus, we have � = 2log �
log �

or � =

2log �
log �

or � = 2log �
log �

− 1 . That is, � ∈ 2log �
log �

+ 1 + �, 2 log �
log �

+ �, 2log �
log �

− 1 + � ; 0 ≤

� < 1. After collaborating these values, we have � = 2 log �
log �

+ �'; − 1 ≤ �' < 2. Hence, total

number of double Fibonomial numbers not exceeding a positive real number � is

�=1

2 log �
log � +�' 2 log �

� log �
− � + 2 + �� ; where 0 ≤ � < 2 , −1 ≤ �' < 2 and � is an even integer.

Considering 2 log �
log �

+ �' = � and � = 2�, this sum can be written as

log �
log � �≤�

2

1
�

� − 2 �≤�
2
�� + 2 + � �≤�

2
1� .

Using results from [1], this can be expanded as
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log �
log �

log �
2

+ � + � 2
�

− �2

8
+ � �

2
+ 2+� �

2
+ � 1 .

This is same as log �
log �

log log �
2 log �

+ � + � 2 log �
log �

− log �
4 log �

+ � log �
2 log �

. Thus, the total

number of double Fibonomial numbers not exceeding a given positive real number �, when �
is an even integer, is

log �
log �

log log �
2 log �

+ � − 1
4

log �
log �

+ � log � .

Using the similar technique, the total number of double Fibonomial numbers not
exceeding a given positive real number �, when � is an odd integer, can be obtained as

log �
log �

log log �
2 log �

− 1
2

+ � − 1
4

log �
log �

+ log �
8 log �

− 1
8

+ � log � .

If we let �1 =
0; � is even
1
2

; � is odd and �2 =
0 ; � is even

log �
8 log �

− 1
8

; � is odd , then combining the

result for all the positive values of �, we get the total number of double Fibonomial numbers
not exceeding a given positive real number � as

log �
log �

log log �
2 log �

− �1 + � − 1
4

log �
log �

+ �2 + � log � .

The following corollary states the natural density of double Fibonomial numbers
approaches to zero.
Corollary 3.5: The natural density of double Fibonomial numbers approaches to zero.
Proof: Using the above theorem, the natural density � of double Fibonomial numbers is given
by

� = lim
�→∞

log �
log � log log �

2 log �−�1 + �−1
4

log �
log �+�2+� log �

�
.

This is same as � = lim
�→∞

log �
log � log log �

2 log �−�1 + �−1
4

log �
log �+�2

�
+ lim

�→∞

� log �
�

. Since � > log �

lim
�→∞

� log �
�

vanish. Therefore, � = lim
�→∞

log �
log � log log �

2 log �−�1 + �−1
4

log �
log �+�2

�
approaches to zero.

Hence, the natural density of double Fibonomial numbers in the set [1, �] approaches to
zero, where � is any positive real number.
4. Number of super Fibonomial numbers not exceeding a desired limit:

In this section too, to obtain the number of super Fibonomial numbers not exceeding
given positive real number �, we first discard all trivial super Fibonomial numbers from the
table 6 to obtain non-trivial super Fibonomial numbers.

‘Table 9 about here’
We observe that the �th cross-row consists of numbers of the type �

� �
, which we

define to be the sequence ��(�) = ��,� �≥1 . The following lemma states that ��(�) is the
strictly increasing sequence for fixed � ≥ 1, which can be easily proved using the definition
of super Fibonomial numbers.
Lemma 4.1: ��(�) is the strictly increasing sequence for fixed � ≥ 1.
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Note that the right most column of table 9 contains the elements of the type 2�
� �

. To

decide the range of �, we need to find �, such that 2�
� �

≤ � < 2� + 2
� + 1 �

. But we first show

that these terms make a strictly increasing sequence, which can again be proved using the
definition of super Fibonomial numbers.

Lemma 4.2: 2�
� �

is strictly increasing for every � ≥ 1.

Following theorem gives the number of super Fibonomial numbers up to a desired limit.
Theorem 4.3: The total number of super Fibonomial numbers not exceeding any large

positive real number � is given by �=1

3 log �
log �+1+�' 2 log �

� log �
+ �2+4�+9

4
− 3

2
� + �� ; where −2 ≤

� < 2 and 0 ≤ �' < 1, as required.
Proof: We first find the number of super Fibonomial numbers not exceeding � in each of the
sequences ��,� �≥1 . For that we find � such that ��,� ≤ � < ��,�+1 , which is equivalent to
� + 2� − 1

� �
≤ � < � + 2�

� �
. This gives �+2�−1 !�

∗

�+�−1 !�
∗ ≤ � × �!�∗ < �+2� !�

∗

�+� !�
∗ . Again, since

� �−2 ≤ �� ≤ � �−1 , we get �
� �−3

2 ≤ �!� ≤ �
� �−1

2 and consequently we get

�
� �−4 �+1

6 ≤ �!�∗ ≤ �
� �−1 �+1

6 .

Therefore, we have �
�+2�−1 �+2�−5 �+2�

6

�
�+�−1 �+�−5 �+�

6
≤ � × �!�∗ < �

�+2�−1 �+2�+1 �+2�
6

�
�+�−1 �+�+1 �+�

6
. This can be

further simplified as �
�(7�2+3�2+9��−18�−12�+5)

6 ≤ � × �!�∗ < �
� 7�2+3�2+9��−1

6 , which is equivalent to

7�2 + 3�2 + 9�� − 18� − 12� + 5 ≤ 6 log �×�!�
∗

� log �
< 7�2 + 3�2 + 9�� − 1. Thus,

3 � + 3
2

�
2

− 12 � + 3
2

� + 5 ≤ 6 log �×�!�
∗

� log �
− �2

4
< 3 � + 3

2
�

2
− 1.

From this it can be seen that � ≤ 6 log �×�!�
∗

3� log �
− �2

12
+ 7

3
− 3

2
� + 2 < � + 4. This gives

� ∈

6 log �×�!�
∗

3� log �
− �2

12
+ 7

3
− 3

2
� + 2 , 6 log �×�!�

∗

3� log �
− �2

12
+ 7

3
− 3

2
� + 1 ,

6 log �×�!�
∗

3� log �
− �2

12
+ 7

3
− 3

2
� , 6 log �×�!�

∗

3� log �
− �2

12
+ 7

3
− 3

2
� − 1 ,

6 log �×�!�
∗

3� log �
− �2

12
+ 7

3
− 3

2
� − 2

.

Since log � × �!�∗ ≈ log � + � �+1 �+2
6

log �, we get

� ∈

2 log �
� log �

+ �2+4�+9
4

− 3
2

� + 2 , 2 log �
� log �

+ �2+4�+9
4

− 3
2
� + 1 ,

2 log �
� log �

+ �2+4�+9
4

− 3
2

� , 2 log �
� log �

+ �2+4�+9
4

− 3
2

� − 1 ,

2 log �
� log �

+ �2+4�+9
4

− 3
2
� − 2

.
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Thus, � ∈

2 log �
� log �

+ �2+4�+9
4

− 3
2

� + 2 + �', 2 log �
� log �

+ �2+4�+9
4

− 3
2

� + 1 + �',

2 log �
� log �

+ �2+4�+9
4

− 3
2

� + �', 2 log �
� log �

+ �2+4�+9
4

− 3
2

� − 1 + �',

2 log �
� log �

+ �2+4�+9
4

− 3
2
� − 2 + �'

; where 0 ≤

�' < 1. These values can be collaborated as

� = 2 log �
� log �

+ �2+4�+9
4

− 3
2

� + �; where −2 ≤ � < 2.

This value gives the number of super Fibonomial numbers not exceeding � in each of the
sequence �� � .

Further, we need to find the value of � such that 2�
� �

≤ � < 2� + 2
� + 1 �

, that is

�
�2(3�−1)

3 ≤ � < ��3 . It can be easily observed that � = 3 log �
log �

+ 1 + �'; 0 ≤ �' < 1. Hence, the

total number of super Fibonomial numbers not exceeding a given positive real number � is

given by �=1

3 log �
log �+1+�' 2 log �

� log �
+ �2+4�+9

4
− 3

2
� + �� ; where −2 ≤ � < 2 and 0 ≤ �' < 1 , as

required.
Acknowledgement:
The authors are thankful to the Department of Science and Technology for providing
financial support under WOS – A fellowship.
Tables:

� ��
�,� ∗

0 1
1 1
2 �
3 �3 + ��
4 �6 + 3�4� + 2�2�2

5 �10 + 6�8� + 12�6�2 + 9�4�3 + 2�2�4

6 �15 + 10�13� + 39�11�2 + 75�9�3 + 74�7�4 + 35�5�5

+ 6�3�6

Table 1: Genorial numbers

1

1 1
1 � 1

1 �2

+ �
�2

+ � 1
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1 �3

+ 2��

�4

+ 3�2�
+ 2�2

�3

+ 2�� 1

1
�4

+ 3�2�
+ �2

�6

+ 5�4�
+ 7�2�2

+ 2�3

�6

+ 5�4�
+ 7�2�2

+ 2�3

�4

+ 3�2�
+ �2

1

1
�5

+ 4�3�
+ 3��2

�8

+ 7�6�
+ 16�4�2

+ 13�2�3

+ 3�4

�9

+ 8�7�
+ 22�5�2

+ 23�3�3

+ 6��4

�8

+ 7�6�
+ 16�4�2

+ 13�2�3

+ 3�4

�5

+ 4�3�
+ 3��2

1

Table 2: Genomial numbers

� 0 1 2 3 4 5 6 7 8 9 10

�‼� 1 1 1 2 3 10 24 130 504 4420 27720
Table 3: Double Fibonorial numbers

1
1 1

1 1 1
1 2 2 1

1
3
2

3
3
2

1

1
10
3

5 5
10
3

1

1
24
10

8 6 8
24
10

1

1 65
12

13 65
3

65
3

13 65
12

1

1 252
65

21
126

5
56

126
5

21 252
65

1

Table 4: Double Fibonomial numbers

� �!�∗

0 1
1 1
2 1
3 2
4 12
5 360
6 86400
7 269568000
8 17662095360000

Table 5: Super Fibonorial numbers
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1
1

1 1
1 2

1 6 12
1 30 180

1 240 7200 21600
1 3120 74880 11232000

1 65520 204422400 24530688000 122653440000
Table 6: Super Fibonomial numbers

�

�2 + �
�3 + 2�� �4 + 3�2� + 2�2

�4

+ 3�2�
+ �2

�6 + 5�4�
+ 7�2�2 + 2�3

�5 + 4�3�
+ 3��2

�8 + 7�6� + 16�4�2

+ 13�2�3 + 3�4
�9 + 8�7� + 22�5�2

+ 23�3�3 + 6��4

Table 7: Non-trivial genomial numbers

1

2
3
2

3
10
3

5
24
10

8 6
65
12

13 65
3

252
65

21
126
5

56

Table 8: Non-trivial double Fibonomial numbers
1

2
6 12

30 180
240 7200 2160

3120 74880 11232000
65520 204422400 24530688000 122653440000

Table 9: Non-trivial super Fibonomial numbers
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