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Solution of the non-linear fractional sir epidemic model using fractional 

reduced differential transform method 
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Abstract:  

To solve the non-linear SIR epidemic model of fractional order, an efficient methodology 

known as the fractional reduced differential transform method (FRDTM) is used in this research 

paper. In medical research, the fractional SIR epidemic model is a system of fractional ordinary 

differential equations used to investigate the epidemiology and the treatment of sick patients. 

The Caputo sense is used to characterize the fractional derivative in this research. We get a 

power series solution of non-linear SIR epidemic model of fractional order with the fractional 

reduced differential transform method (FRDTM). Also, in this research paper, we use the 

fractional ordered non-linear SIR epidemic model to demonstrate the efficacy of the fractional 

reduced differential transform method (FRDTM) and compared findings with residual power 

series method (RPSM). The approximate derived solutions are shown in graphical form and 

quantitatively analyzed. As can be seen from these numbers and graphs, for resolving a broad 

variety of real-world situations involving fractional differential equations we can trust the 

fractional reduced differential transform method (FRDTM). 

Keywords: Fractional reduced differential transform method (FRDTM); Fractional SIR 

epidemic model; Caputo concept; System of fractional ordinary differential equations; 

Epidemic dynamics. 

MSC2020 Classification: 26A33, 34A08. 

Introduction: 

Since the beginning of time, contagious illnesses and epidemics have been a severe danger to 

the population’s safety, causing severe consequences not just for humanity but also for 

civilization’s economy and social development. Several of the most pressing concerns in 

applied mathematics, human physiology, engineering, physical science, as well as other 

scientific fields is the development and implementation methods for constructing mathematical 

models of real-world occurrences. Many contagious diseases have raised our concerns towards 

them, such as measles, rubella, hepatitis B, hepatitis E, hepatitis C, HIV, poliovirus (Banatvala 

& Brown, 2004; Grossman et al., 2006; Perry & Halsey, 2004; Poynard et al., 2003; Sarin & 

Kumar, 2012; Tiollais et al., 1985; Wimmer et al., 1993). We have recently seen how 

devastatingly the COVID-19 pandemic has affected the whole world (Ciotti et al., 2020). 

Mathematical models are essential for understanding how the infection spreads and for 

developing new strategies for halting its spread (Grassly & Fraser, 2008). Kermack et al. 

(William Ogilvy Kermack, 1927) brought the SIR epidemiology model for the first time in the 

nineteenth century. There are three groups in a SIR epidemic model: individuals who 

are susceptible (S), individuals who are infected (I), and the individuals who have recovered 

(R) (William Ogilvy Kermack, 1927). In this research paper, we pay attention to the following 

fractional ordered highly non-linear SIR epidemic model having arbitrary order: 
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The concerned initial conditions are 0(0)S S , 0(0)I I , and 0(0)R R . Also, the order of the 

fractional derivative   in reference to time ‘t’ taken through Caputo sense is 0 1  , 1m  , 

and 2m  are constants whose values are always positive, that are referred to as the infection rate 

and the removal rate, correspondingly. As a result, we would not take into account population 

turnover (birth or death), as well as all diseases, are presumed to stop with recovery. If we add 

together all three populations, we get the total size of the population (S + I + R). Also, many 

studies of epidemic models are examined, along with their histories and potential remedies 

(Allen, 1994; Becker, 1979; Hethcote, 1994). Many mathematicians have solved the SIR 

epidemic model using novel mathematical techniques (Hasan et al., 2019; Yildirim & 

Cherruault, 2009); moreover, many mathematicians have also solved the fractional SIR 

epidemic model (Ameen & Novati, 2017; Arqub & El-Ajou, 2013; Haq et al., 2017; Hasan et 

al., 2019; Sene, 2020). 

Here we employ the fractional reduced differential transform method (FRDTM) aimed at 

figuring out a highly non-linear SIR epidemic model of fractional order, which was initially 

based on the differential transform method (DTM). The differential transform method (DTM) 

was initially coined and invented in the year 1986 by Zhou (Zhou, 1986), a mathematician from 

China, to solve the problems of mathematics in electrical circuits. DTM is based on classic 

Taylor’s series method, then in the year 2009, Keskin et al. (Keskin & Oturanç, 2009) 

developed the reduced differential transform method (RDTM) to solve partial differential 

equations. Moreover, in the year 2011, Gupta et al. (Gupta, 2011) used the fractional reduced 

differential transform method (FRDTM); in this case, they were the first who used FRDTM to 

solve fractional ordered Benney–Lin equation. The fractional reduced differential transform 

method (FRDTM) seems to be a very robust but effortless mathematical technique that can 

solve highly non-linear partial differential equations (PDEs) and ordinary differential equations 

(ODEs), and that is the reason we are using FRDTM in this paper to solve the fractional SIR 

epidemic model. Many noble mathematicians have employed the fractional reduced differential 

transform method (FRDTM) to solve various fractional differential equations (Abuteen et al., 

2016; Patel & Tandel, 2021; Rawashdeh, 2017; Singh & Kumar, 2018; Singh & Srivastava, 

2015; Srivastava et al., 2014; Tamboli & Tandel, 2022; Tandel et al., 2022). In this paper, a 

comparison is made between the fractional reduced differential transform method’s (FRDTM) 

output and the residual power series method’s (RPSM) (Hasan et al., 2019) output graphically 

for precision and pertinency. 

The remaining research paper is laid out in the following manner: Section 2 provides specific 

findings, fundamental definitions, and the fractional calculus (FC) employed in the research 

study. Section 0 lays out the fundamentals of the fractional reduced differential transform 

method (FRDTM) and its attributes. The fractional reduced differential transform method 
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(FRDTM) is used for the non-linear SIR epidemic model of fractional order under Section 0. 

Results, tables, and figures for the suggested highly non-linear SIR epidemic model of 

fractional order are addressed within Section 0, that is here the most important section of this 

research paper.  

Fractional Calculus: 

This section covers the fundamentals of fractional calculus (FC), as well as its preliminaries 

and notations. Differentiation and integration have a plethora of definitions in mathematical 

research papers (Balint et al., 2022; Din et al., 2022; Ebaid & Al-Jeaid, 2022; Lan, 2022; Liang 

et al., 2022; Ruziev & Zunnunov, 2022; Sene, 2022; Vellappandi et al., 2022). Many research 

articles show that the Riemann-Liouville (RL), as well as Caputo definitions of fractional 

calculus (FC), are the most widely used. 

Definition 2.1. In the following equations, the fractional ordered derivatives in the 

Caputo and Riemann-Liouville (RL) sense are presented (Luchko, 2022): 

  (2) 

  (3) 

and, 

  (4) 

where  and t denotes the time, whose value is always positive. For  and 

  these derivatives have two following essential properties: 

  (5)
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Fractional Reduced Differential Transform Method (FRDTM) and its 

properties: 

Within the following segment, we present the fundamental properties for the fractional reduced 

differential transform method (FRDTM) (Singh & Srivastava, 2015; Srivastava et al., 2014). 

Multiplying two independent variable functions    z t   yields an analytical function called 

     ,z t z t    . Consequently, the following is how this function may be expressed: 
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Definition 3.1: Spectrum function  ,z t  of dimension ‘t’ aimed at analytical and 

continuously differentiable functions is supplied in the domain with regard to space variable z 

and time variable t as follows (Keskin & Oturanç, 2009): 
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where the time–functional derivative order is denoted by  , and  0k  

The original function is denoted by  ,z t , whereas the fractionally reduced altered function 

is denoted by  k z . To understand the inverse fractional differential transformation of  k z

, let us look at the following: 
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Combining the results of the equation (3) and the equation (4), the following is obtained: 
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Whenever 0 0t  , the equation (4) transforms into  
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   Table 1: Axioms for the fractional reduced differential transform method (FRDTM) 

Functional Form Transformed Form 
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An example of a wave equation (Abbasbandy, 2008) may help us understand the fundamentals 

of FRDTM: 
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where following is the initial condition: 
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 denotes the second-order linear operator. 

 

From FRDTM and Table 1, it is possible to derive the iteration formula as: 



 

56 

 

      VNSGU Journal of Research and Innovation (Peer Reviewed) 

 ISSN NO.:2583-584X                                                                                                                          

 Volume No.2 Issue No.:1 

56 

 
  
 

   1

1 1
( ) ( )

1
k k k k

k
z H z A z B z

k






  
     

 
 (9) 

where the transformations of the functions  ,W z t ,  ,A z t ,  ,B z t  and ( , )h z t are denoted 
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The initial condition yields, 
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By substituting the equation (10) into the equation (9) and doing straightforward iterative 

computations, the following values of  k z  are obtained. As a result, by performing an 

inverse transformation on the   
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  values, the approximate answer is: 
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The approximate solution’s order is n. 

That is why we can get the problem’s exact solution by 
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Solving Fractional SIR Epidemic Model using FRDTM: 

Let us rewrite the equation (1), 
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Also the initial conditions are taken from (Hasan et al., 2019; Kumar et al., 2020), as follows: 

0 620S  , 0 10I  , and 0 70R  . 0(0)R R . Also, the order of the fractional derivative   in 

reference to time ‘t’ taken through Caputo sense is 0 1  , 1 0.001m   , and 2 0.072m   are 

positive constants also taken from (Hasan et al., 2019; Kumar et al., 2020). Therefore, the 

equation (1) can be written as:  
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Now using the fundamental properties of FRDTM, the equation (13) can be transformed into: 
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Similarly, the initial conditions can be transformed into: 
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On replacing the equation (15) into the equation, (14) we get the successive values as follows: 

 

 
 

 
 

 
   

   

1 2

2

3 2

6.200 3.3356
, ,

1 2 1

1.7900888 1 0.033976 2 1
,

3 1 1

S t S t

S t

 

 

 


       




      
    

 (16) 

 

 
 

 
 

 
   

   

1 2

2

3 2

5.48 2.94104
, ,

1 2 1

1.57833392 1 0.033976 2 1
,

3 1 1

I t I t

I t

 

 

 


     




     
    

 (17) 

 

  
 

 
 

 
 

1 2 3

0.72 0.39456 0.21175488
, , ,

1 2 1 3 1
R t R t R t

  


  
     

 (18) 

The following four terms approximation can be gained by applying the inverse fractional 

reduced transformation to the equations (16), (17), and (18) respectively: 
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As described here, additional terms may be included in the series solution to increase the 

approach’s convergence. It is, therefore, possible to come up with an accurate solution to 

the problem as follows: 
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   

   

   

2

2

3

2

5.48 2.94104
10

1 2 1
( )

1.57833392 1 0.033976 2 1

3 1 1

t t

I t

t

 



 

 

 


 
   

 
     

    

 (23) 

 
     

2
30.72 0.39456 0.21175488

( ) 72
1 2 1 3 1

t t
R t t

 


  


    

     
 (24) 

Using fractional reduced differential transform method (FRDTM), these polynomials could be 

used to approximate the solution of the fractional epidemic SIR model for α = 1. 
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Results and Discussion: 

Absolute error and relative error have been calculated among fractional reduced differential 

transform method (FRDTM) and residual power series method (RPSM), where the definitions 

of these terms are as follows: 

 output outputAbsolute error FRDTM RPSM   (28) 

 and 

 
output output

output

FRDTM RPSM
Relative error

RPSM


  (29) 
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Figures 1–3 clearly demonstrate the excellent conformity among the fractional reduced 

differential transform method (FRDTM) & residual power series method (RPSM) based on the 

answers produced. Absolute error and relative error as defined above are plotted in 2D graphs 

for susceptible-S(t), infected-I(t), and recovered-R(t) values in figures 4-6 and figures 7-9 

respectively, also both errors’ numerical values are shown in the tables 2, 3, and 4. From these 

figures 4-9 and tables 2-4, we can clearly see that error is negligible, so both FRDTM and 

RPSM agree with each other really well. Using Figures 10–12, we’ve shown the 3D plots of 

the susceptible-S(t), infected-I(t), and recovered-R(t) individuals using the fractional reduced 

differential transform method (FRDTM). Since derivative having order in fraction allows for 

more flexibility than an integer order one, we can find solutions for any number of orders of 

derivatives using the suggested technique FRDTM (see Figures 13–15). Figure 16 shows the 

population versus time graph of the FRDTM solution. Tables 2, 3, and 4 present a numerical 

comparison between the 15th-FRDTM solution and the 15th-RPSM solution for 1   in order 

to demonstrate the reliability for the fractional reduced differential transform method (FRDTM) 

aimed at estimating solution for proposed SIR epidemic model. 

 

 

Figure 1: FRDTM and RPSM 2D-plot of susceptible persons S(t) w.r.t time t at 1.   
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Figure 2: FRDTM and RPSM 2D-plot of infected persons I(t) w.r.t time t at 1.    

 

 
Figure 3: FRDTM and RPSM 2D-plot of recovered persons R(t) w.r.t time t at 1.    
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Figure 4: At 1  , the absolute error of susceptible persons S(t) versus time t plot using 

FRDTM and RPSM outputs. 

 
Figure 5: At 1  , the absolute error of infected persons I(t) versus time t plot using 

FRDTM and RPSM outputs. 
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Figure 6: At 1  , the absolute error of recovered persons R(t) versus time t plot using 

FRDTM and RPSM outputs. 

 
Figure 7: At 1  , the relative error of susceptible persons S(t) versus time t plot using 

FRDTM and RPSM outputs. 
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Figure 8: At 1  , the relative error of infected persons I(t) versus time t plot using 

FRDTM and RPSM outputs. 

 
Figure 9: At 1  , the relative error of recovered persons R(t) versus time t plot using 

FRDTM and RPSM outputs. 
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Figure 10: 3D plot of susceptible people’s behaviour in reference with time t & 0 1   

by FRDTM. 

 
 

Figure 11: 3D plot of infected people’s behaviour in reference with time t & 0 1   by 

FRDTM. 

 
Figure 12: 3D plot of recovered people’s behaviour in reference with time t & 0 1   by 

FRDTM. 
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Figure 13: Susceptible people’s behaviour in reference with time t & for distinct values of 

  by FRDTM. 

 

 
Figure 14: Infected people’s behaviour in reference with time t & for distinct values of   

by FRDTM. 
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Figure 15: Recovered people’s behaviour in reference with time t & for distinct values of 

  by FRDTM. 

 
Figure 16: 2D plot for population versus time t using FRDTM.  0 8.695t   
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                 Table 2: Solution of S(t) by using FRDTM and RPSM (Hasan et al., 2019). 

t 
S(t) by FRDTM,

1   

S(t) by RPSM,

1   

Absolute Error in 

S(t) 

Relative Error in 

S(t) 

0 620 620 0 0 

0.15 619.0314885 619.0314885 194.385353335 10  
227.084216902 10  

0.30 617.9818692 617.9818692 172.478414995 10  
204.010497910 10  

0.45 616.8446872 616.8446872 162.448922481 10  
193.970079552 10  

0.60 615.6130342 615.6130342 151.165513788 10  
181.893257164 10  

0.75 614.2795261 614.2795261 153.642186357 10  
185.929200307 10  

0.90 612.8362842 612.8362842 158.47136660 10  
171.382321318 10  

 

Table 3: Solution of I(t) by using FRDTM and RPSM (Hasan et al., 2019). 

t 
I(t) by FRDTM,

1   

I(t) by RPSM,

1   

Absolute Error in 

I(t) 

Relative Error in 

I(t) 

0 10 10 0 0 

0.15 10.85595123 10.85595123 101.543231243 10  
111.421553220 10  

0.30 11.78338495 11.78338495 92.469135997 10  
102.095438624 10  

0.45 12.78795373 12.78795372 81.249982902 10  
109.774690527 10  

0.60 13.87570084 13.87570080 83.950508955 10  
92.847069855 10  

0.75 15.05307713 15.05307703 89.644664893 10  
96.407105206 10  

0.90 16.32695691 16.32695671 71.999890321 10  
81.224900838 10  
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Table 4: Solution of R(t) by using FRDTM and RPSM (Hasan et al., 2019). 

t R(t) by FRDTM,

1   

R(t) by RPSM,

1   

Absolute Error in 

R(t) 

Relative Error in 

R(t) 

0 70 70 0 0 

0.15 70.11256023 70.11256023 191.130771978 10  
211.612795161 10  

0.30 70.23474584 70.23474584 187.186997627 10  
191.023282357 10  

0.45 70.36735900 70.36735900 178.132732917 10  
181.155753610 10  

0.60 70.51126504 70.51126504 164.540565084 10  
186.439488900 10  

0.75 70.66739675 70.66739675 151.721028449 10  
172.435392456 10  

0.90 70.83675885 70.83675885 155.102917432 10  
177.203770353 10  

 

Conclusion: 

In this research paper for the non-linear SIR epidemic model with fractional order, we use a 

novel application of the fractional reduced differential transform (FRDTM). Also, here, it is 

shown outputs for the fractional reduced differential transform (FRDTM) as two-dimensional 

& three-dimensional plots. The fractional reduced differential transform (FRDTM) solution is 

in the form of a convergent power series with beautifully calculated components that do not 

need linearization, perturbation, or discretization. Traditional techniques need more time and 

effort to implement; thus, this approach is less time-consuming than other methods. In this 

research, error analysis is done numerically and graphically among the fractional reduced 

differential transform method (FRDTM) & residual power series method (RPSM). By 

comparing the suggested approach’s findings to the residual power series method (RPSM), we 

found that the fractional reduced differential transform method (FRDTM) yielded more 

accurate approximations. Fractional SIR epidemic models for various values of   were solved 

using the fractional reduced differential transform method (FRDTM) for determining how 

fractional derivative affected them. We found that the curves for fractional SIR epidemic model 

solutions resembled those of classical SIR epidemic model solutions. 
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