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Abstract: 
The present study examines a mathematical model for the examination of pollution transport 

and diffusion processes in river systems. We have presented a one-dimensional model in this 

paper, which is represented by differential equations for convection and diffusion that vary 

with time. Our research focuses on the river's potential for contamination, both in the presence 

and absence of a particular source of pollution. The objective of the present study is to examine 

the effects of two distinct input source functions, namely the sinusoidal and exponential forms. 

We have done research on the diffusion and transport of pollutants, concentrating on the 

phosphate and nitrate of the Tapi River, in order to verify the model. To get the answers, the 

Reduced Differential Transform Method (RDTM) is used. The convergence of the solution 

function is assessed for each instance derived from RDTM in order to determine the accuracy 

of the solution. In every case, the pollutant concentration at different times and distances has 

been shown numerically. 3D graphs are used to compare the pollution levels with and without 

sources. The method detailed in this research paper, which utilizes a one-dimensional pollution 

model to forecast river pollution, applies to additional rivers. 

1 Introduction 
The public's concern for environmental preservation has grown significantly in recent 

years. This is owing to the fact that future generations will need to have access to resources. 

The discharge of pollutants into surface waterways is the root of many issues. Pollutants are 

being discharged into many rivers, particularly those that run through densely populated 

regions (Ani E. C., 2009). In order to overcome the difficulties of environmental quality 

assessment and management, it is crucial to handle operationally vast arrays of measurement 

data regarding the parameters characterizing its geological, chemical, and biological properties. 

By using a broad range of mathematical techniques and computers, this may be done at an 

appropriate level in line with today's standards (Kachiashvili K. J., 2009). Computer models 

that can forecast the movement of contaminants in natural water systems have become an 

urgent need in recent years because of the growing environmental concerns. In contrast to 

actual models, these digital representations have the advantage of being less expensive and 

more easily customized to meet the needs of the user. A new generation of tidal river pollution 

models can only be developed because of the broad use of mathematical modelling tools for 

studying hydrodynamics and pollutant transport  (Nassehi V., 1993). 

The Fickian technique is commonly employed in water quality research, particularly 

when it is necessary to get precise information on the distribution of pollutants in the water 

body  (Ani E. C. C. V., 2012). Numerical simulation is used to create a one-dimensional water-
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quality model in a river. The boundary conditions of the governing equation are not uniform. 

Saulyev finite difference estimates pollutant concentrations (Samalerk P., 2018). For the 

temporal integration of parabolic equations, the cubic C1 -spline collocation technique is an A-

stable approach. In terms of both space and time, the suggested technique is accurate to the 

fourth order  (Mohebbi A., 2010). Several different numerical approaches are going to be used 

in order to solve the one-dimensional advection–diffusion equation that has a constant 

coefficient. Approximations based on the finite difference at two levels are used in these 

various approaches (Dehghan M., 2004). 

The proposed mathematical models and methods can be easily implemented using 

initial data, offering an efficient assessment of water quality in river systems. The model can 

be extended to other disciplines in science and engineering. It analyzes the distribution of 

polluting substances in rivers, considering multiple sources and types of pollutants. One-

dimensional advection-diffusion models are created, hypothesizing the presence of pollution 

sources in the studied river section, including point or volume sources, underground sources, 

and other rivers flowing into the section. 

The current investigation involves collecting water samples from the Tapi river in Surat, 

India. The purpose is to create a mathematical model that can forecast pollution levels at 

various distances and times. This work presents a mathematical model that describes the 

movement of pollutants in one dimension. The reduced differential transform method (RDTM) 

is used in order to solve the governing equation, which is a one-dimensional advection-

diffusion equation. In addition to this, we have investigated the convergence of analytical 

solutions obtained by the RDTM method. 

The mathematical expression for the problem is explicated in Section 2. A detailed 

summary of the foundational principles that form the basis of the RDTM is provided in Section 

3. Section 4 contains the detailed process of converging the analytic series solution proposed 

by RDTM. As part of an evaluation of the method's efficacy, Section 5 examines the numerical 

results and convergence. A graphical representation of the obtained solutions is generated 

through the application of 3D plots. The conclusion is succinctly summarized in Section 6. 

2 Mathematical Formulation of the problem 
The Fickian diffusion equation can be used to represent the random distribution of 

particles in turbulent flow, according to Taylor's 1954 hypothesis. Diffusion in a channel flow 

is described by the one-dimensional differential equation (Kim S., 2006). In this section, a 

mathematical model of chemical transport, diffusion, and absorption is presented. After 

introducing the mathematical model, which is an advection-diffusion-reaction equation with 
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appropriate initial and boundary conditions, different physical and geometrical parameters are 

then given (Kachiashvili K., 2007). Advection–diffusion equations must be solved in order to 

determine the pollutant concentration in the water sources. The following equation could be 

used to calculate concentration. 

*c c c
A AD Av Af

T X X X

    
   

    
 (1) 

where ( / )c mg L  is the BOD or COD concentration throughout its path through the 

medium along the flow field at any given time ( )T hour and distance ( )X km . The 

Longitudinal Diffusion coefficient is expressed as 2( / )D km hour . The irregular uniform 

seepage flow velocity in the longitudinal direction is expressed as * ( / )v km hour . The flow 

area of a river's cross-section is 2( )A km . 3( / )f mg km hour  is a source term. X  is the 

longitudinal distance from the study area's beginning. The dimension of time is T . Throughout 

the investigation, the cross-sectional area of the river is considered a constant. Equation (1) 

then transforms into the following form: 

*c c c
D v f

T X X X

    
   

    
 (2) 

The description of the dimensionless variables is given as (Rubbab, 2016): 
* 2

2
, , ,

X DT v L L f
x t v S

L D DL
     (3) 

L  represents the length of the research section of the river. We obtain a dimensionless 

advection-diffusion equation in the given form. 
2

2

c c c
v S

t xx

  
  

 
 (4) 

To analyze this problem, we have used the concentration of pollutant substances NO3 

and PO4 of river Tapi. In this paper, we have taken 5 km Research area of Tapi river from 

ONGC bridge to Pal Umra bridge. So here, river’s length(L) is 5 km. Using collected data of 

pollutants NO3 and PO4 concentration, at time 0t   (any fixed time), the concentration is 

assumed as a polynomial form with good statistical indices. 

In this article, the concentration level of contamination is discussed for both without 

and with various kind of input sources. Various cases have been examined to determine the 

concentration function’s value and visual depiction. We’re looking at two distinct sorts of 

known sources to see the pollution level in river. Here, S  denotes the rate of the pollutant that 

enters the beginning border of the portion of the river that is being examined per unit of time 

and per unit of volume. According to the value of ( , )S x t , these two types of input sources 

include exponential and sinusoidal source. 
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Initial function (5) for NO3 pollutant concentration function (Tandel, 2024): 

 
5 4 3 293 1277 17413 3641 227 307

( ,0)
6250000 1562500 1250000 50000 50000 500

x x x x x
c x                                  (5) 

Initial function (6) for PO4 pollutant concentration function (Tandel, 2024): 
5 4 3 2617 3517 53511 1879 3157 2791

( ,0)
15625000 1562500 1250000 6250 6250 1000

x x x x x
c x                          (6)     

3 Reduced Differential Transform Method 
Let ( , )b    be a two-variable function. Assume that ( , )b    can be described as the 

combination of two single variable functions. i.e., ( , ) ( ) ( )b k l     

By properties of differential transform,  ( , )b    can be represented as  

   
0 0 0

( , ) ( )i j k

ki j
i j k

b M L B     
  

  

     

Where ( )kB   is called t-dimensional spectrum function of ( , )b    (Al-Amr, 2014). 

0

1
( ) ( , )

!

k

k k
B b

k


  




 
  

 
 (7) 

 

In this paper, Uppercase letters [ ( , )]B    denote changed functions, whereas lowercase 

letters [ ( , )]b    denote original functions. The differential inverse transform of ( )kB   is 

defined by  

0

( , ) ( ) k

k

k

b B   




  (8) 

 

From Equations (7) and (8) We get  

0 0

1
( , ) ( , )

!

k
k

k
k

b b
k



    




 

 
  

 
  (9) 

 

Basic concept of RDTM, Consider the nonlinear differential partial differential equation: 

       , , , ,Lb Rb Nb            (10) 

 

with the initial condition ( ,0) ( )b y x  , 

where L
t





, ( , )Rb    is a linear operator which has partial derivatives, ( , )Nb    is a 

nonlinear term and  ( , )    is an inhomogeneous term. 

By applying the transform on equation (10), we get 

1( 1) ( ) ( ) ( ) ( )k k k kk B RB NB         (11) 

                 

where ( ), ( ), ( )k k kB RB     and ( )kNB  are transform of ( , ), ( , ), ( , )b Rb        and 

( , )Nb    respectively. from initial condition, we can write  

0 ( ) ( )B x y x  (12) 
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By solving equations (11) and (12), we get the values of ( )kB  . Subsequently, an estimated 

solution is generated by performing an inverse transformation on the collection of values 

 
0

( )
n

k k
B 


. The result of this transformation is an approximate answer. 

0

( , ) ( )
n

k

n k

k

b B   


  (13) 

 

where n  is an approximation order solution. Hence, the exact solution to the problem is stated 

by  

( , ) lim ( , ).n
n

b b   


  (14) 

 

Table 1 about here 

4 Convergence Analysis 

Theorem 4.1. If 
0

m

m

m

P t




  is given series (Maisuria M. A., 2023), 

 [A] 
1

0 1
m

m

P

P
 


       given series is convergent. 

 [B] 
1

1
m

m

P

P
 


      given series is divergent. 

5 Results and discussion 
5.1 NO3 pollutant concentration 

(a) Without pollutant source  

In this case, ( , ) 0S x t   in equation (4). Using RDTM to solve equation (4) with initial 

condition (5). We get 
2 3

0 1 2 3( , ) ...c x t M M t M t M t      

where,  
5 4 3

0

293 1277 17413 3641 227 307

6250000 1562500 1250000 50000 50000 500
M

x x x x x
       

4 3 2

1

93 3019 383787 195503 14337

2500000 1562500 12500000 1250000 100000

x x x x
M       

3 2

2

93 2613 528699 1745089

2500000 1562500 25000000 25000000

x x x
M       

2

3

93 3949 231977

5000000 6250000 50000000

x x
M     

Here, 

1 2 3

0 1 2

0.2335 1, 0.4869 1, 0.0665 1
M M M

M M M
       

Given series solution of nitrate concentration function is converge to exact solution. 
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Table 2 about here 

Table 2 give the numerical values of nitrate pollutant concentration without input source at 

different level of distance and time. 

(b) With exponential input source 

In this case, 
3

2
( , )

( )

te
S x t

x L






 in equation (4). Using RDTM to solve equation (4) with initial 

condition (5). We get 
2 3

0 1 2 3( , ) ...c x t H H t H t H t      

where, 
5 4 3 2

0

93 1277 17413 3641 227 307

6250000 1562500 1250000 50000 50000 500

x x x x x
H         

 

2 3 4

1 3

195503 383787 3019 932 14337

1250000 12500000 1562500 2500000 1000005

x x x x
H

x
     


 

 

2 2 3

2 5

2613 2 17 11 528699 93 1745089

1562500 25000000 2500000 250000002 5

x x x x x
H

x

 
    


 

 

4 3 2 2

3 7

2 37 237 715 1745 3949 93 231977

6250000 5000000 500000006 5

x x x x x x
H

x

   
   


 

Here, 

1 2 3

0 1 2

0.2596 1, 0.4270 1, 0.1229 1
H H H

H H H
       

Therefore, given series solution is converge to exact solution. 

Table 3 about here 

The values of nitrate pollutant concentration at various values of x and t with 

exponential input pollutant source are presented in table 3. 

(c) With sinusoidal input source 

In this case, 
3

2sin
( , )

( )

t
S x t

x L



 in equation (4). Using RDTM to solve equation (4) with initial 

condition (5). We get 
2 3

0 1 2 3( , ) ...c x t D D t D t D t      

where, 
5 4 3 2

0

93 1277 17413 3641 227 307

6250000 1562500 1250000 50000 50000 500

x x x x x
D         

4 3 2

1

93 3019 383787 195503 14337

2500000 1562500 12500000 1250000 100000

x x x x
D       



 

50 
 

VNSGU Journal of Research and Innovation (Peer Reviewed) 

 ISSN:2583-584X                                                                                                                              

 Volume No.3 Issue No.:2 
50 

 

2 3

2 3

528699 2613 931 1745089

25000000 1562500 2500000 250000005

x x x
D

x
    


 

 

2

3 5

3949 9313 231977

6250000 5000000 500000002 5

x xx
D

x


   


 

Here, 

1 2 3

0 1 2

0.2335 1, 0.5427 1, 0.0864 1
D D D

D D D
       

Therefore, given series solution is converge to exact solution. 

Table 4 about here 

The values of nitrate pollutant concentration at various values of x and t with 

sinusoidal input pollutant source are presented in table 4. 

Figure 1 about here 

Figure 1 give the 3D graphical comparison of solution function obtained for all cases. 

5.2 Phosphate concentration 

(a) Without pollutant source  

In this case, ( , ) 0S x t   in equation (4). Using RDTM to solve equation (4) with initial 

condition (6). We get 
2 3

0 1 2 3( , ) ...c x t A A t A t A t      

where,  
5 4 3 2

0

617 3517 53511 1879 3157 2791

15625000 1562500 1250000 6250 6250 1000

x x x x x
A         

4 3 2

1

617 2067 1140297 348433 10673

6250000 390625 12500000 625000 12500

x x x x
A       

3 2

2

617 14253 1537161 1441231

6250000 3125000 25000000 6250000

x x x
A       

2

3

617 671 664419

12500000 390625 50000000

x x
A     

Here, 

1 2 3

0 1 2

0.3059 1, 0.2701 1, 0.0576 1
A A A

A A A
       

Given series solution of NO3 concentration function is converge to exact solution. 

Table 5 about here 

Table 2 give the numerical values of nitrate pollutant concentration without input source at 

different level of distance and time. 
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(b) With exponential input source 

In this case, 
3

2
( , )

( )

te
S x t

x L






 in equation (4). Using RDTM to solve equation (4) with initial 

condition (6). We get 
2 3

0 1 2 3( , ) ...c x t B B t B t B t      

where, 
5 4 3 2

0

617 3517 53511 1879 3157 2791

15625000 1562500 1250000 6250 6250 1000

x x x x x
B         

 

2 3 4

1 3

348433 1140297 2067 6172 10673

625000 12500000 390625 6250000 125005

x x x x
B

x
     


 

 

2 2 3

2 5

14253 2 17 11 1537161 617 1441231

3125000 25000000 6250000 62500002 5

x x x x x
B

x

 
    


 

 

4 3 2 2

3 7

2 37 237 715 1745 671 617 664419

390625 12500000 500000005

x x x x x x
B

x

   
   


 

Here, 

1 2 3

0 1 2

0.3117 1, 0.2631 1, 0.0743 1
B B B

B B B
       

Therefore, given series solution is converge to exact solution. 

Table 6 about here 

The values of nitrate pollutant concentration at various values of x and t with 

exponential input pollutant source are presented in table 3. 

(c) With sinusoidal input source 

In this case, 
3

2sin
( , )

( )

t
S x t

x L



 in equation (4). Using RDTM to solve equation (4) with initial 

condition (6). We get 
2 3

0 1 2 3( , ) ...c x t C C t C t C t      

where, 
5 4 3 2

0

617 3517 53511 1879 3157 2791

15625000 1562500 1250000 6250 6250 1000

x x x x x
C         

4 3 2

1

617 2067 1140297 348433 10673

6250000 390625 12500000 625000 12500

x x x x
C       

 

2 3

2 3

1537161 14253 6171 1441231

25000000 3125000 6250000 62500005

x x x
C

x
    


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 

2

3 5

671 617 664419

390625 12500000 500000002 5

13 x x
C

x

x
 




   

Here, 

1 2 3

0 1 2

0.3059 1, 0.2794 1, 0.0644 1
C C C

C C C
       

Therefore, given series solution is converge to exact solution. 

Table 7 about here 

The values of nitrate pollutant concentration at various values of x and t with 

sinusoidal input pollutant source are presented in table 4. 

Figure 2 about here 

Figure 2 give the 3D graphical comparison of solution function obtained for all cases. 

6 Conclusion 
The current problem was studied under two scenarios: no input source and input source. This 

work aims to detect and reduce exponential and sinusoidal input pollution. To increase input 

data quality and dependability, offer appropriate solutions for tackling various forms of 

contamination. This study examines exponential and sinusoidal input pollution sources to 

propose solutions to reduce their negative impacts. We found that exponential input sources 

had higher concentrations than sinusoidal input sources at different distances and periods. In 

particular, when the input source is sinusoidal, concentration is greater than when it is absent 

over distances and time intervals. Our study shows that input sources increase pollution levels. 

This work solves a one-dimensional advection-diffusion equation with a source term using the 

Reduced Differential Transform Method (RDTM). Data is fitted to a polynomial function to 

establish the starting condition. This method may be extended to two- and three-dimensional 

advection-diffusion equations. 
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Table 1: Reduced differential transformation (Keskin, 2010; Maisuria M. A., 2023; 

Srivastava, 2014) 

Original form Transformed form 

( , )b    

0

1
( ) ( , )

!

k

k k
B b

k


  




 
  

 
 

( , ) ( , )p q       ( ) ( )k kP Q     

m n   ( )m k n    

( , )m nb     ( )m

k nB 
 

 

( , ) ( , ) ( , )z p q       
0

( ) ( ) ( )
k

k r k r

r

Z P Q  



  

( , )
r

r
b  






 

( )!
( )

!
k r

k r
B

k



 

( , )b  





 ( )kB 






 

Table 2: Numerical value of nitrate at different x  and t   

\x t  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.15 0.629003 0.643095 0.658574 0.675468 0.693805 0.713612 0.734915 0.757743 0.782123 0.808081 

0.25 0.630738 0.643324 0.657256 0.672561 0.689266 0.707398 0.726984 0.748051 0.770625 0.794733 

0.35 0.633786 0.644926 0.657371 0.671147 0.686282 0.702802 0.720733 0.740101 0.760934 0.783258 

0.45 0.638067 0.647819 0.658836 0.671144 0.684769 0.699737 0.716075 0.733808 0.752963 0.773566 

0.55 0.643504 0.651926 0.661573 0.672471 0.684646 0.698123 0.712928 0.729086 0.746625 0.765569 

0.65 0.650023 0.657171 0.665505 0.67505 0.685832 0.697876 0.711208 0.725853 0.741836 0.759183 

0.75 0.657551 0.66348 0.670556 0.678805 0.688251 0.69892 0.710837 0.724026 0.738513 0.754323 

0.85 0.666015 0.670779 0.676652 0.683659 0.691826 0.701176 0.711735 0.723527 0.736577 0.750909 

0.95 0.675347 0.678998 0.683722 0.689542 0.696484 0.704571 0.713828 0.724279 0.735948 0.748861 

Table 3: Numerical value of nitrate at different x  and t   

\x t  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.15 0.630452 0.645974 0.662885 0.681231 0.70106 0.722418 0.745351 0.769906 0.79613 0.824069 

0.25 0.632104 0.646035 0.661308 0.67797 0.696063 0.715632 0.736723 0.759379 0.783646 0.809567 

0.35 0.635075 0.647481 0.661185 0.67623 0.692659 0.710513 0.729837 0.750673 0.773062 0.797049 

0.45 0.639285 0.65023 0.662431 0.675927 0.69076 0.706971 0.724601 0.74369 0.76428 0.786411 

0.55 0.644657 0.654205 0.664966 0.676978 0.690282 0.704918 0.720923 0.738338 0.757203 0.777556 

0.65 0.651114 0.659326 0.66871 0.679302 0.691143 0.704268 0.718718 0.734529 0.751739 0.770388 

0.75 0.658585 0.66552 0.673586 0.682821 0.69326 0.704941 0.7179 0.732174 0.7478 0.764814 

0.85 0.666996 0.672713 0.679521 0.687457 0.696557 0.706855 0.718388 0.73119 0.745298 0.760747 

0.95 0.676278 0.680833 0.686441 0.693137 0.700956 0.709933 0.720101 0.731496 0.744151 0.758101 

Table 4: Numerical value of nitrate at different x  and t   
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\x t  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.15 0.629079 0.643402 0.659282 0.676756 0.695862 0.716639 0.739125 0.763358 0.789376 0.817217 

0.25 0.630809 0.643614 0.657923 0.673773 0.691202 0.710245 0.73094 0.753324 0.777433 0.803305 

0.35 0.633852 0.645199 0.657999 0.67229 0.688105 0.705482 0.724455 0.745061 0.767334 0.791311 

0.45 0.63813 0.648077 0.65943 0.672222 0.686488 0.702263 0.719582 0.738478 0.758987 0.781142 

0.55 0.643564 0.652171 0.662135 0.67349 0.686269 0.700506 0.716235 0.733489 0.752301 0.772705 

0.65 0.65008 0.657403 0.666036 0.676013 0.687367 0.700128 0.714331 0.730008 0.747191 0.765913 

0.75 0.657604 0.663699 0.671059 0.679716 0.689703 0.70105 0.713789 0.727953 0.743571 0.760677 

0.85 0.666066 0.670987 0.677129 0.684523 0.693201 0.703193 0.714529 0.727241 0.74136 0.756915 

0.95 0.675395 0.679195 0.684174 0.690361 0.697787 0.706482 0.716475 0.727796 0.740476 0.754544 

Table 5: Numerical value of phosphate at different x  and t   

\x t  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.15 2.801306 2.885267 2.973813 3.067024 3.164977 3.26775 3.375422 3.488071 3.605775 3.728612 

0.25 2.757026 2.83559 2.918619 3.006189 3.098378 3.195263 3.296921 3.40343 3.514866 3.631307 

0.35 2.71831 2.791655 2.869344 2.951455 3.038063 3.129244 3.225075 3.325631 3.430989 3.541226 

0.45 2.684913 2.753213 2.825739 2.902568 2.983774 3.069433 3.159619 3.254409 3.353876 3.458097 

0.55 2.656597 2.720022 2.787559 2.85928 2.935261 3.015576 3.100298 3.189502 3.283263 3.381653 

0.65 2.633128 2.691847 2.754563 2.821349 2.892278 2.967424 3.046859 3.130656 3.21889 3.311633 

0.75 2.614278 2.668456 2.726518 2.788537 2.854584 2.924733 2.999054 3.077621 3.160505 3.247779 

0.85 2.599824 2.649622 2.703194 2.760611 2.821944 2.887264 2.956643 3.030152 3.107861 3.189842 

0.95 2.589547 2.635124 2.684367 2.737345 2.794127 2.854785 2.919389 2.988009 3.060714 3.137576 

Table 6: Numerical value of phosphate at different x  and t   

\x t  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.15 2.802755 2.888146 2.978124 3.072787 3.172231 3.276556 3.385857 3.500234 3.619782 3.7446 

0.25 2.758392 2.838301 2.922671 3.011597 3.105174 3.203497 3.30666 3.414758 3.527887 3.646141 

0.35 2.719599 2.79421 2.873159 2.956537 3.044439 3.136955 3.234179 3.336202 3.443117 3.555017 

0.45 2.686132 2.755624 2.829334 2.907351 2.989765 3.076666 3.168145 3.26429 3.365193 3.470943 

0.55 2.65775 2.722301 2.790951 2.863787 2.940898 3.022371 3.108294 3.198754 3.29384 3.39364 

0.65 2.634219 2.694002 2.757768 2.825601 2.897588 2.973816 3.054368 3.139332 3.228793 3.322837 

0.75 2.615312 2.670496 2.729549 2.792553 2.859593 2.930754 3.006117 3.085769 3.169792 3.25827 

0.85 2.600805 2.651556 2.706063 2.764409 2.826675 2.892943 2.963296 3.037815 3.116582 3.19968 

0.95 2.590478 2.636959 2.687086 2.74094 2.7986 2.860148 2.925663 2.995225 3.068916 3.146815 

Table 7: Numerical value of phosphate at different x  and t  

x\t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.15 2.801381 2.885574 2.974521 3.068311 3.167034 3.270778 3.379632 3.493686 3.613028 3.737748 

0.25 2.757097 2.83588 2.919286 3.007401 3.100313 3.198109 3.300877 3.408703 3.521674 3.639879 

0.35 2.718377 2.791928 2.869973 2.952597 3.039885 3.131924 3.228797 3.33059 3.437389 3.549279 

0.45 2.684977 2.753471 2.826333 2.903646 2.985493 3.071959 3.163126 3.259079 3.3599 3.465673 

0.55 2.656657 2.720267 2.78812 2.860298 2.936884 3.017959 3.103606 3.193905 3.288939 3.388789 

0.65 2.633185 2.692079 2.755094 2.822312 2.893812 2.969676 3.049982 3.134812 3.224245 3.318363 

0.75 2.614332 2.668675 2.727021 2.789448 2.856036 2.926863 3.002007 3.081548 3.165563 3.254133 

0.85 2.599875 2.64983 2.703671 2.761475 2.823319 2.889281 2.959437 3.033866 3.112644 3.195848 

0.95 2.589595 2.635322 2.68482 2.738164 2.795431 2.856697 2.922036 2.991526 3.065241 3.143258 
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Figure 1: 3D graph comparison of nitrate concentration function  

 
Figure 2: 3D graph comparison of phosphate concentration function  


